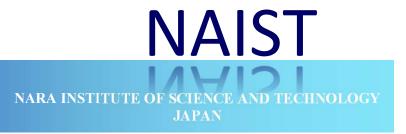


高性能計算基盤

- High Performance Computing Platforms-#8

Analog Computing Implementations in Machine Learning

Renyuan Zhang 2020/06/25

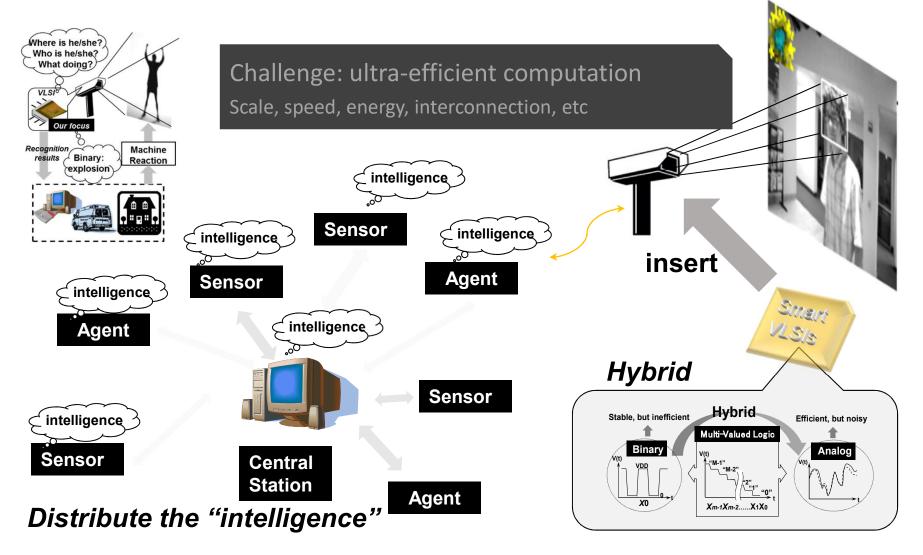


Lab. of Computing Architecture

#1 Why consider AI (VLSI) chips?

Efficient Processor in IoT

Smart chips: VLSI implementations of machine learning (on-chip learning)



How smart is our life?

• Smart life: Through advanced equipment, human being controls the life even the world easily. But what if the environment could respond smartly and automatically to individuals' needs and wishes? [M. Grady et al., *Science*, 2012]

Life style is changing

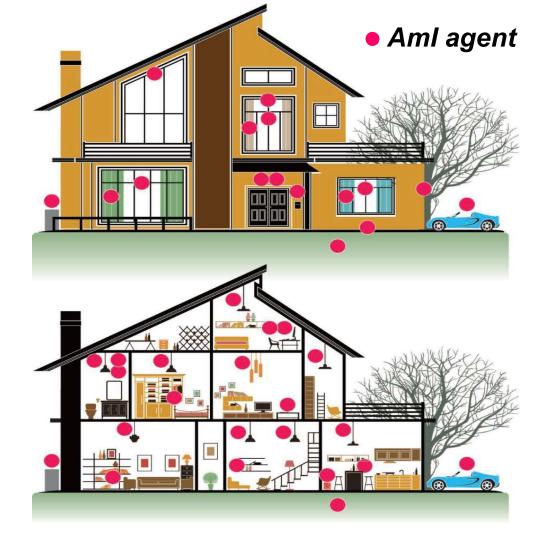
- Natural & Wild Life (hundreds years ago): do everything by hands
- Mechanical life (100 years): do something by driving machine
- Automatic life (50 years): Some machines operate without driving
- Smart life (soon?):
 - smart and soft agent like a bunch of stewards and servants

An example

Smart home

D. Cook, Science, 2012

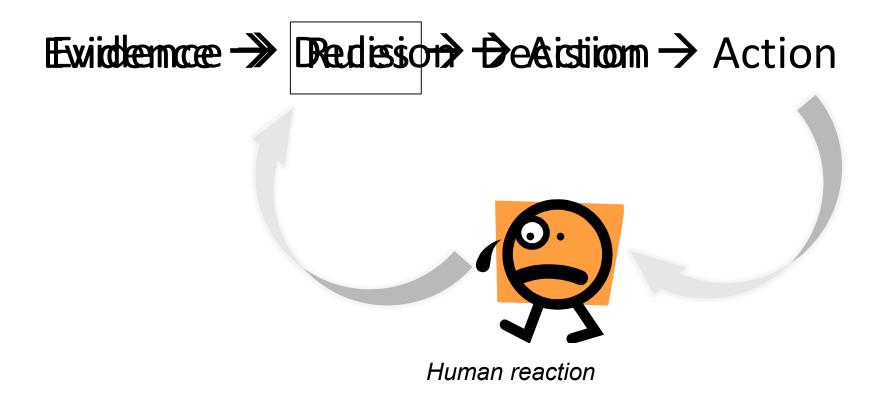
Outer of house



inner of house

To make environment sufficiently smart

 Key point is not automatic response, but make agents "think".



IoT hardware on VLSI side

A large number of various VLSI devices are required

	Power	size	applications
Stationary devices	Watt	Large	Displayer, Monitor, Mechanical driver, Stationary Sensor
Nomadic devices (Body Area Network)	Mill Watt	Small/tiny	Mobile ~, Wearable ~, Body-Embedded ~
Autonomous transducers	Micro Watt	tiny	Communication devices

Central Processing Station (computer?)

H. De Man, "Ambient Intelligence: Gigascale Dreams and Nanoscale Realities", *IEEE Int. Conf. Solid-State Circuits*, vol. 1, pp 29-35, Feb. 2005.

#2 How analog computing effects AI?

#2.1 Fully Parallel Analog VLSIs for Implementing Machine Learning

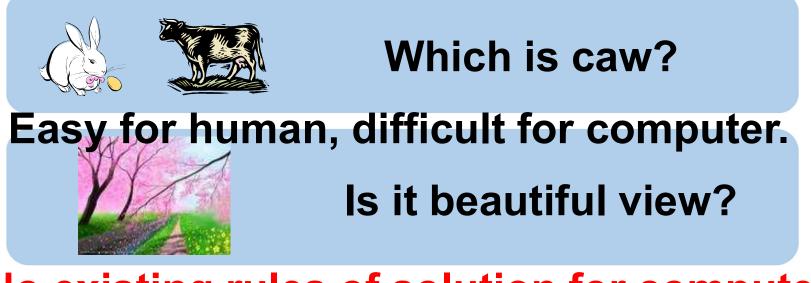
VLSI On-chip Training

• What is "on-chip training"?

$253 \div 11 = ?$ 10010111 + 11011 = ?Rules Faster Bossible but hard Faster Reliably

VLSI On-chip Training

• What is "on-chip training"?



No existing rules of solution for computer.

VLSI On-chip Training

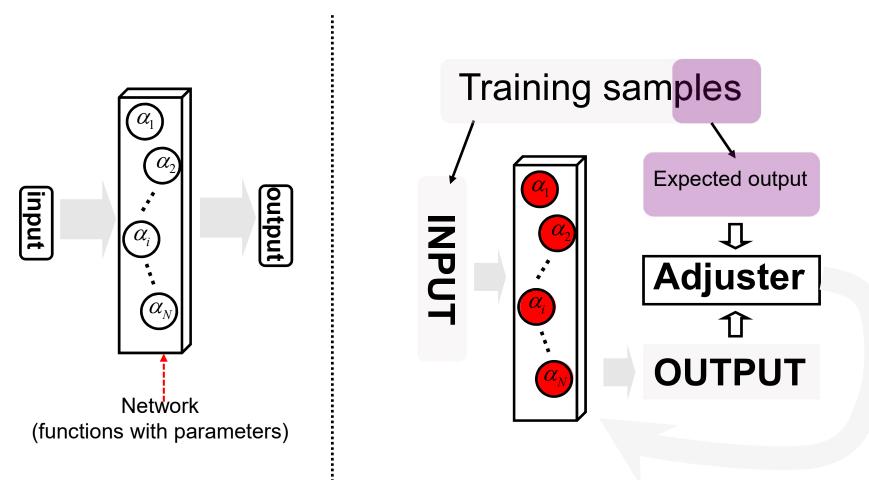
• What is "on-chip training"?

Give some learning examples, make VLSI system pursue the solving rules by itself.

	Processing elements	Element size	Energy use	Processing speed	Style of computation	Fault tolerant	learns	Intelligent, conscious
	10 ¹⁴ synapses	$10^{-6} m$	30W	100 <i>Hz</i>	Parallel, distributed	yes	yes	usually
2	10 ⁸ transistor s	$10^{-6}m$	(CPU)	10 ⁹ Hz	Serial, centralized	no	A little	Not (yet)

What is machine learning?

[Wikipedia] To learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.



Why analog?

Fast calculation (real-time)

Smaller chip area

Fully parallel cellular architecture can be built

Non-boolean

Non-clock based

Error-tolerant

General review

VLSI implementation strategies

	Hardware	Step control	Speed Chip size		Flexibility
Fully-serial	Digital	Clock-based iteration		• •	
Partially-parallel	Analog	Clock-based iteration			
Hyper-Parallel	Analog	Non-clock Freely-feedback			••

Outline

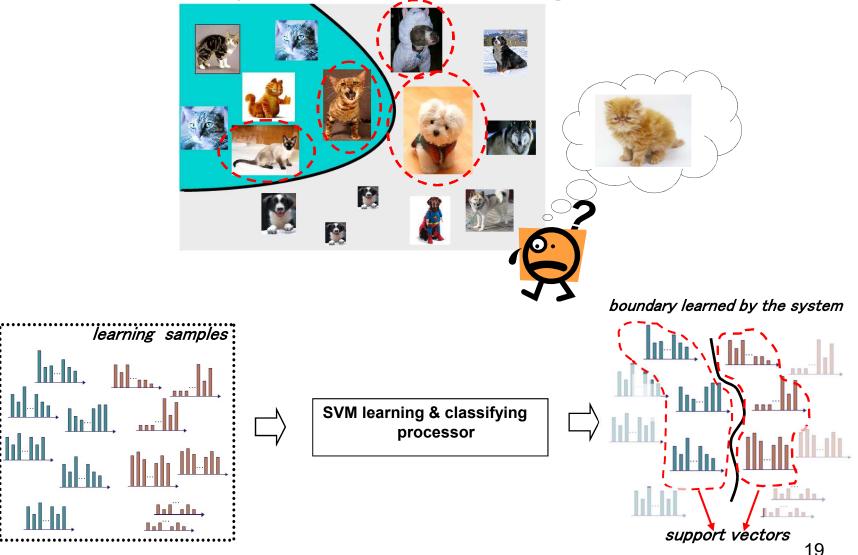
Analog implementations of them:

Support Vector Machine

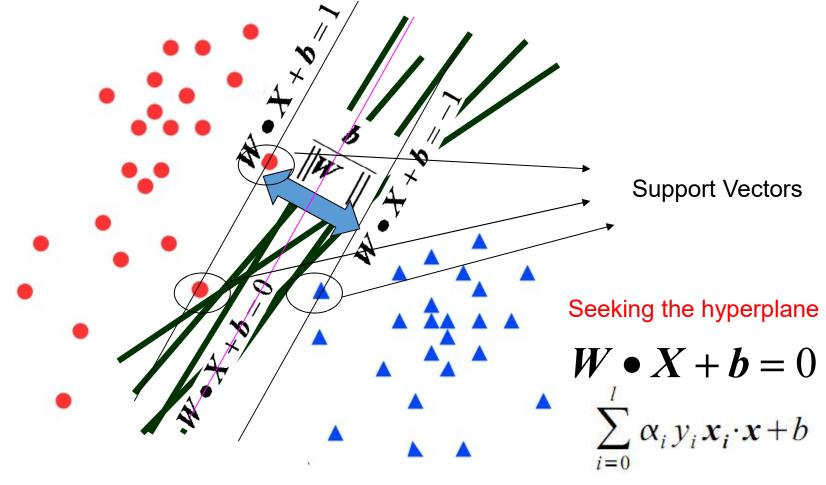
K-Quasi-Centers clustering
 On-line learning strategies
 Data domain description
 Intel Project

Support Vector Machine (SVM)

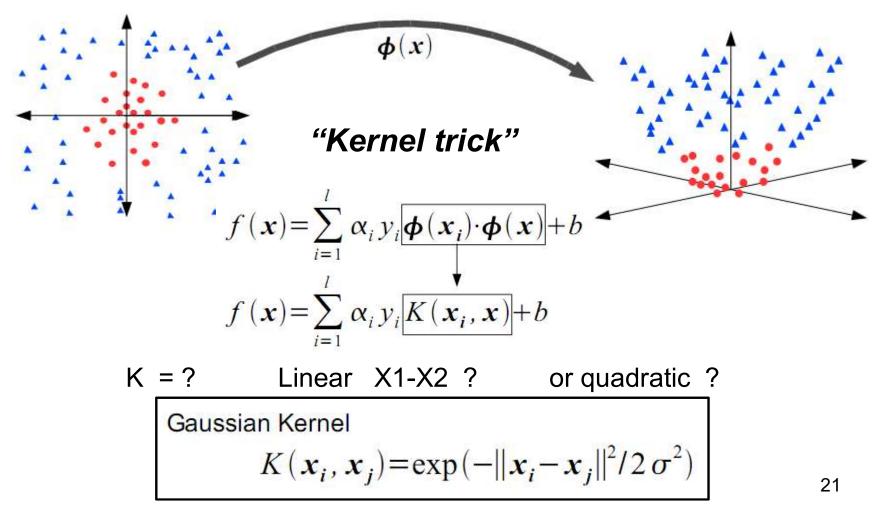
SVM for pattern recognition

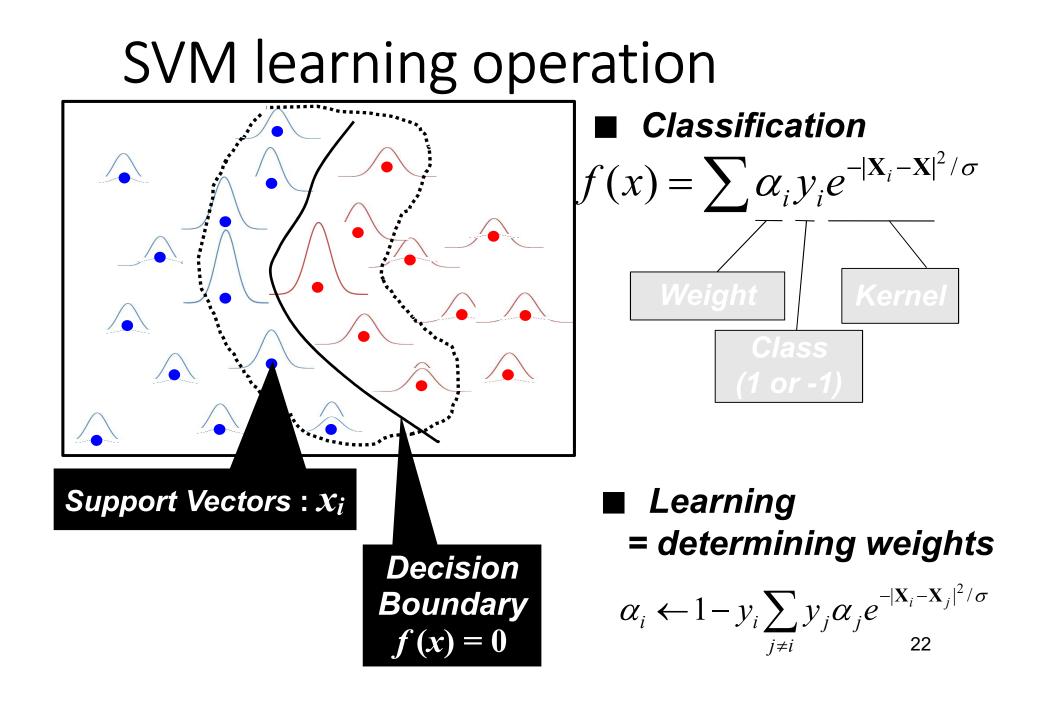


SVM for pattern recognition

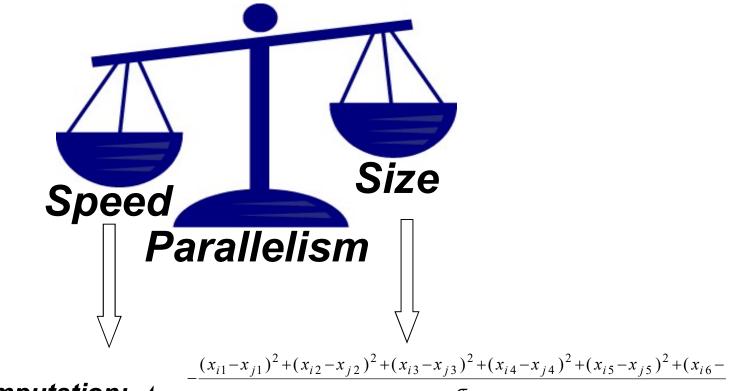


SVM with "Kernel trick" *Non-linear*





Analog Implementation of SVM



1. Complex computation: $A \cdot e$

→ Analog circuits to generate Gaussian function

2. Learning operation: large number of numerical iterations

Fully parallel architecture to avoid clock-based iterations

Analog Implementation of SVM

(with Gaussian function kernel)

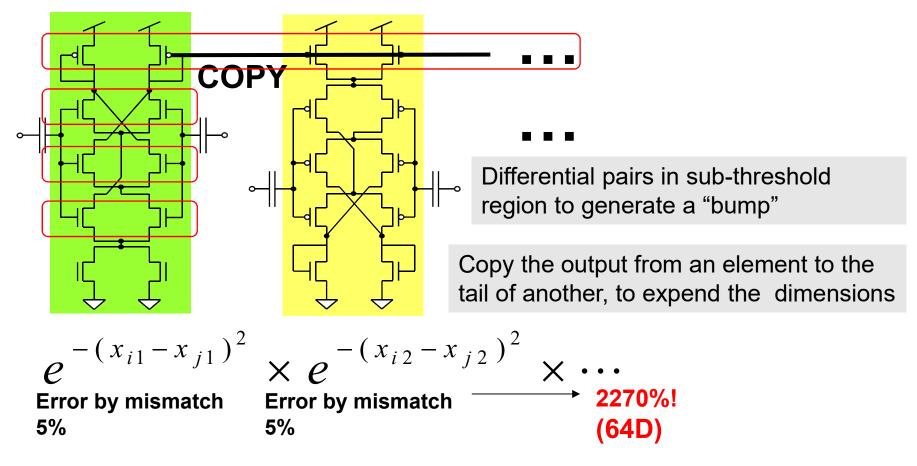
	Parallelism	Chip area	Learning speed	Dimensi ons	Chip measurement
SY. Peng et al. (2008)	Fully parallel	$\propto N^2$	One clock	2	N.A
K. Kang et al. (2010)	Row- parallel	$\propto N$	$\propto N \times i$	2	Available
Target of this work	Fully Parallel	$\propto N$	One clock	64	Available

N: number of learning samples

İ: number of numerical iterations

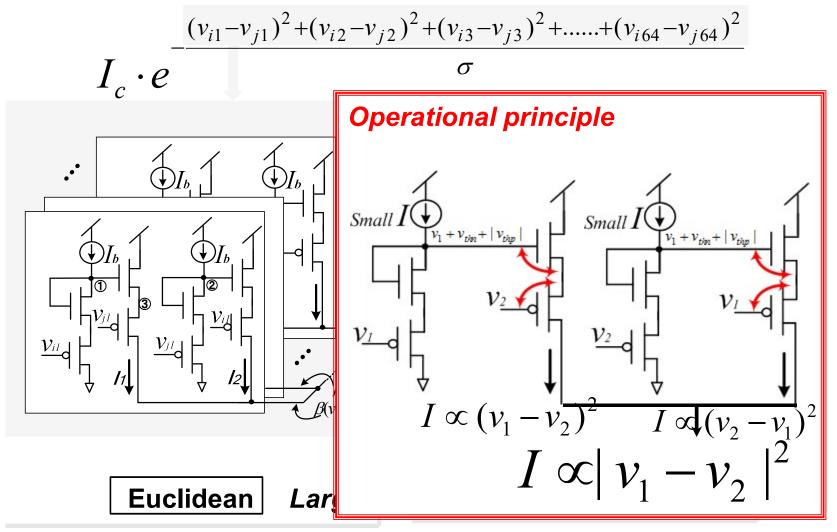
[1] S.-Y. Peng, B. A. Minch, and P. E. Hasler: *Proc. Int. Symp. Circuits Syst.*, 2008, pp. 860 - 863.
[2] K. Kang and T. Shibata: *IEEE Trans. Circuits Syst.*, Vol. 57, no. 7, pp. 1513 – 1524 (2010).

Traditional Gaussian-generation circuit: Bump circuit *

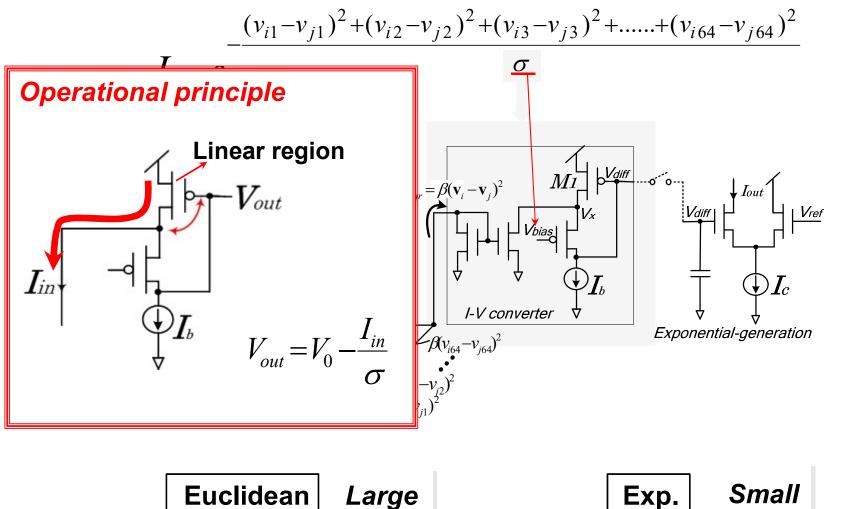


*K. Kang and T. Shibata: *IEEE Trans. Circuits Syst.*, Vol. 57, no. 7, pp. 1513 – 1524 (2010).

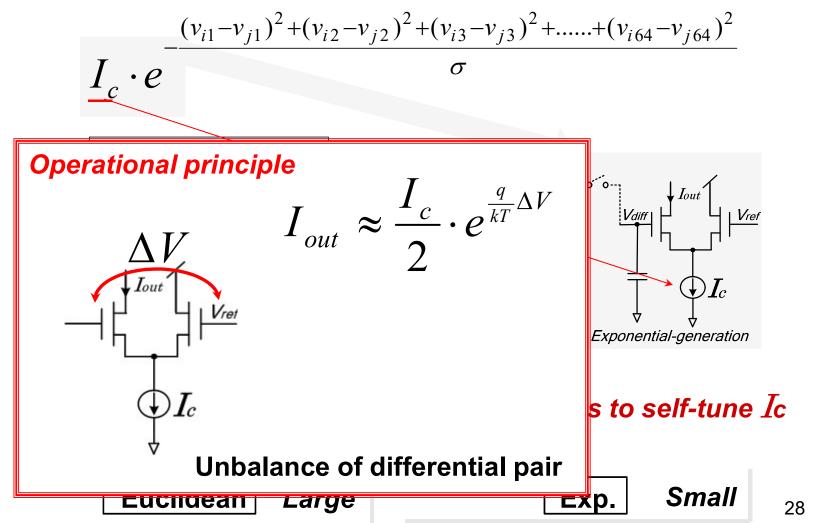
Our Proposed Gaussian-generation circuit



Our Proposed Gaussian-generation circuit

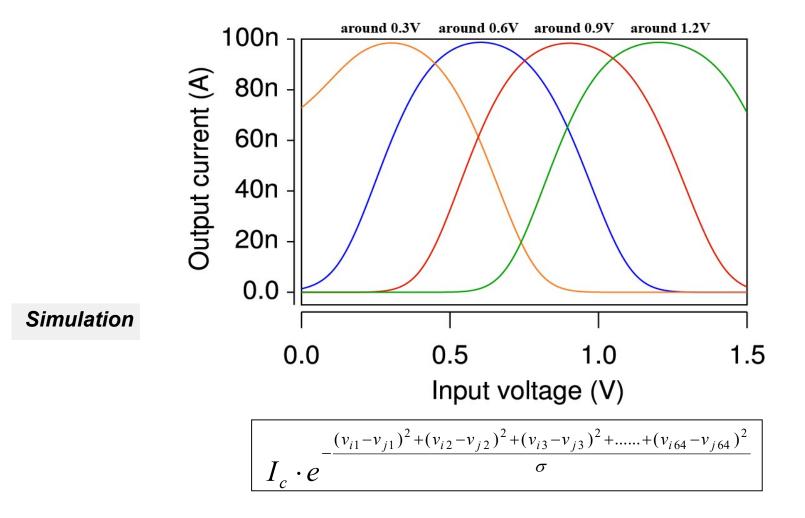


Our Proposed Gaussian-generation circuit



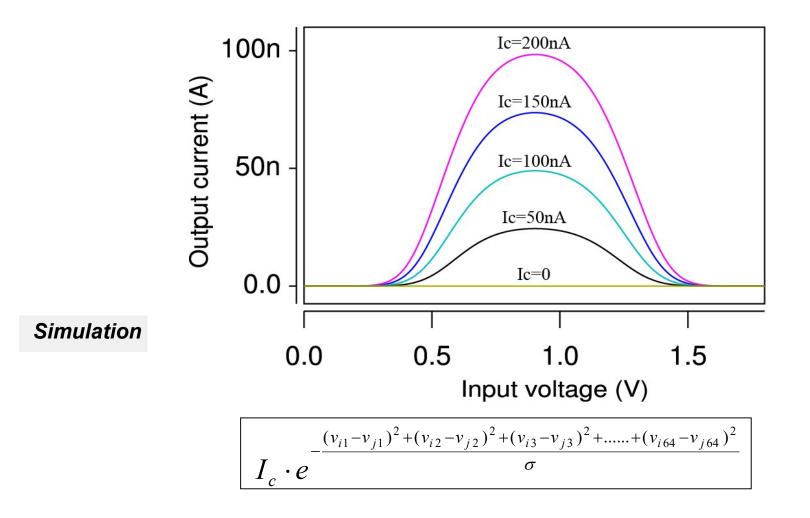
Performance of Our Proposed Gaussian-generation circuit

Center value of Gaussian function feature can be dynamically programmed



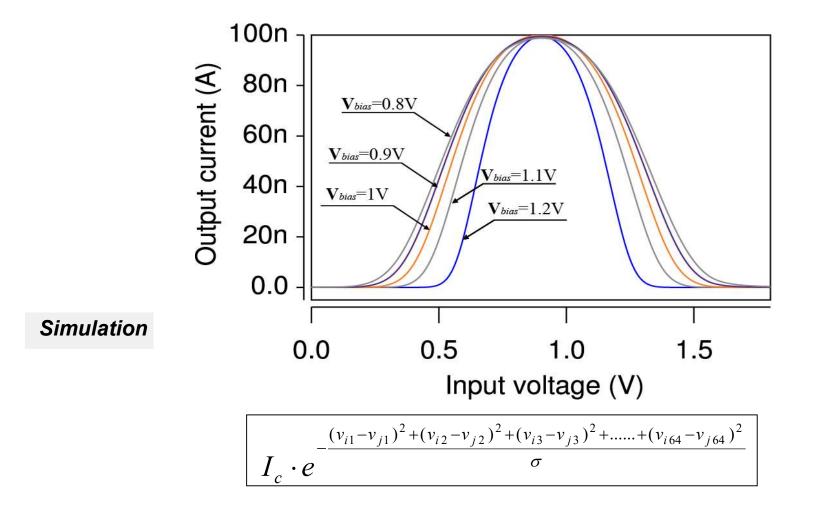
Performance of Our Proposed Gaussian-generation circuit

Peak-height of Gaussian function feature can be dynamically programmed



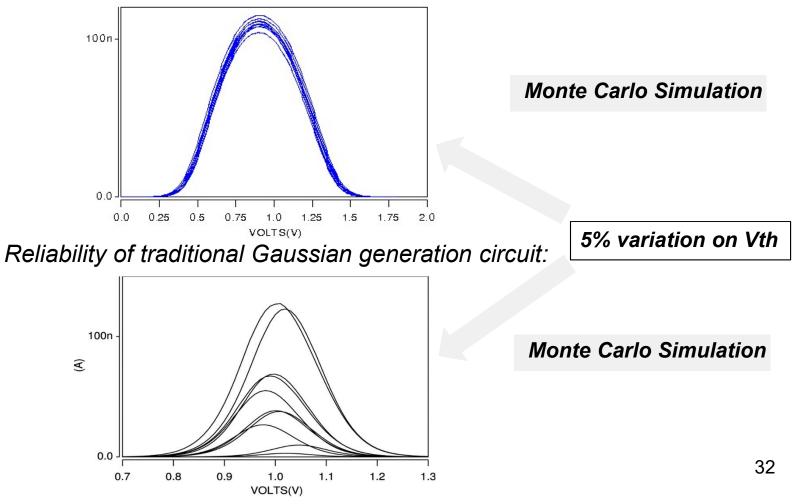
Performance of Our Proposed Gaussian-generation circuit

Width of Gaussian function feature can be dynamically programmed

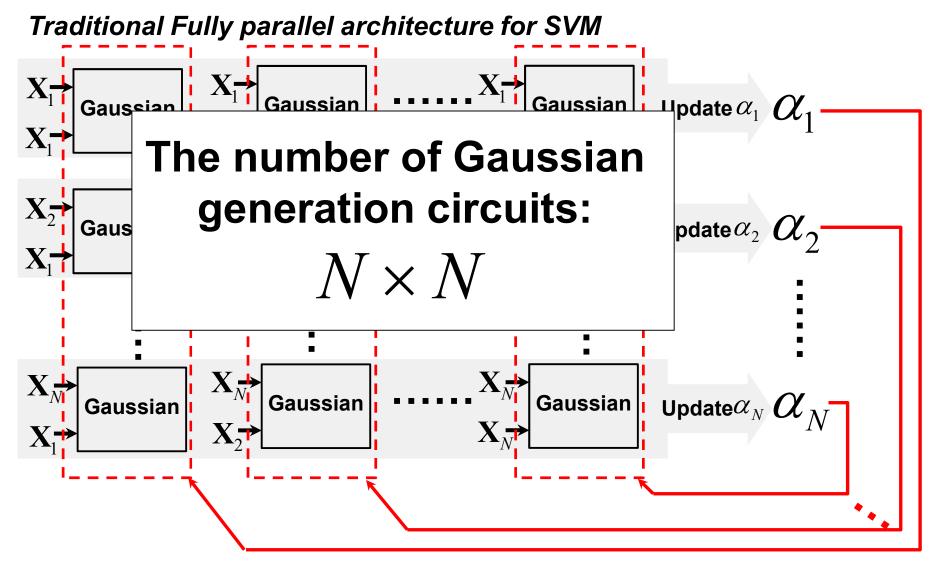


Performance of Our Proposed Gaussian-generation circuit

Reliability of proposed Gaussian generation circuit:

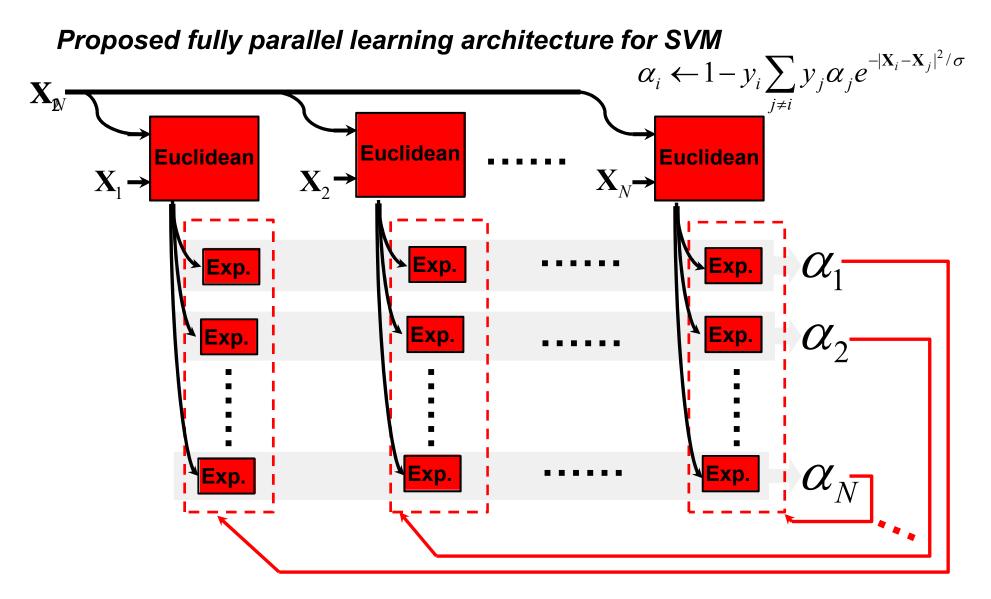


Fully parallel architecture for SVM

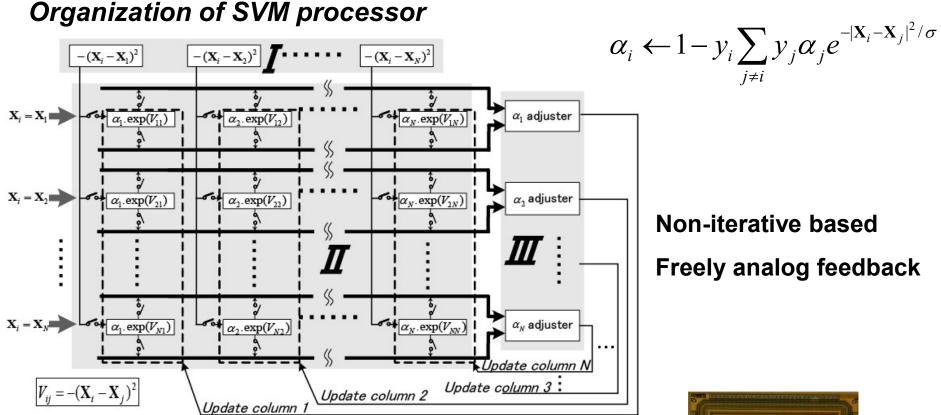


S.-Y. Peng, B. A. Minch, and P. E. Hasler: Proc. Int. Symp. Circuits Syst., 2008, pp. 860 - 863.

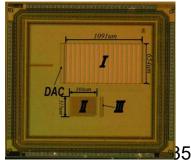
Fully parallel architecture for SVM



Fully parallel architecture for SVM



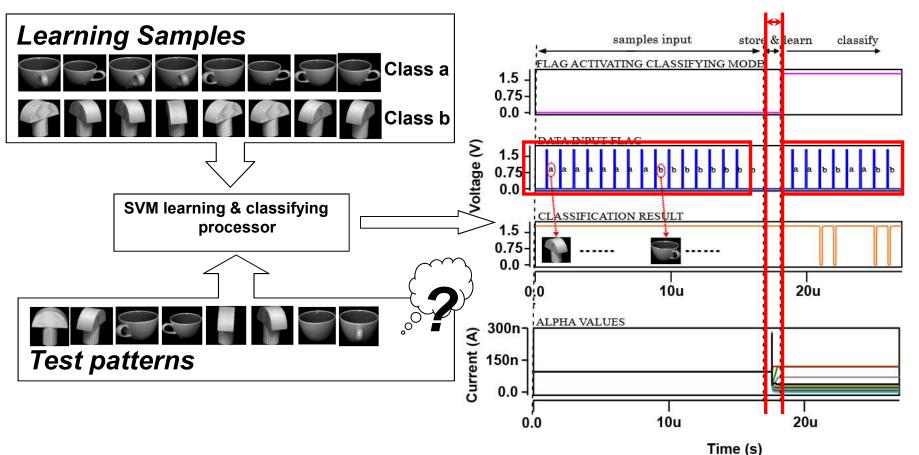
- ✓ Fast learning and self-converging
- ✓Compact chip-area



Verification of SVM processor

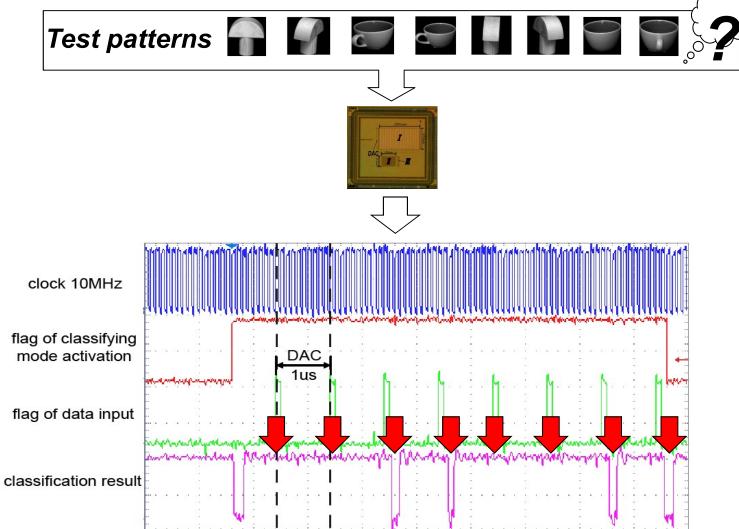
Destailing hypersection DAC session

Simulation



Verification of SVM processor

Chip measurement



Performance of SVM Processor

	[1] ISCAS ²⁰⁰⁸	$[2] TCAS^{2010}$	This work
Technology	Simulation	$0.18 \mu m \text{ CMOS}$	$0.18 \mu m \text{ CMOS}$
Operation	Learning/Classifying	Learning/Classifying	Learning/Classifying
Learning parallelism	Fully parallel	Row parallel	Fully parallel
Kernel function	Gaussian	Gaussian	Gaussian
No. of kernels	$4 \times 4 + 4$	12	18.8^{*}
Input vector	Analog voltage	Digital (8 bits)	Digital (8 bits)
Number of samples	4	12	16
Number of dimensions	2	2	$1 \sim 64$
Learning time (ns)	N/A	$12 \times l \times 60^{\sharp}$	100
Classifying speed (vectors/s)	N/A	8.7×10^5	10^{6}

Comparisons

*The number of kernels is evaluated from the viewpoint of chip area.

 $\ddagger l$ is the number of iterations for convergence.

[1] S.-Y. Peng, B. A. Minch, and P. E. Hasler: *Proc. Int. Symp. Circuits Syst.*, 2008, pp. 860 - 863.
[2] K. Kang and T. Shibata: *IEEE Trans. Circuits Syst.*, Vol. 57, no. 7, pp. 1513 – 1524 (2010).

Support Vector Machine Summary

Proposed architecture can be actually applied in SVM, with improved performances

R. Zhang and T. Shibata, SSDM, 2011.

R. Zhang and T. Shibata, JJAP, 2012.

Outline

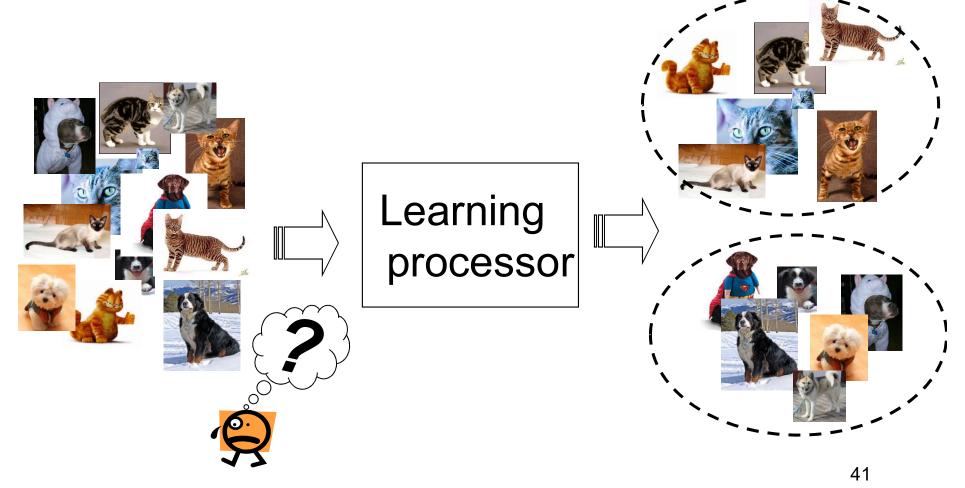
Analog implementations of them:

Support Vector Machine

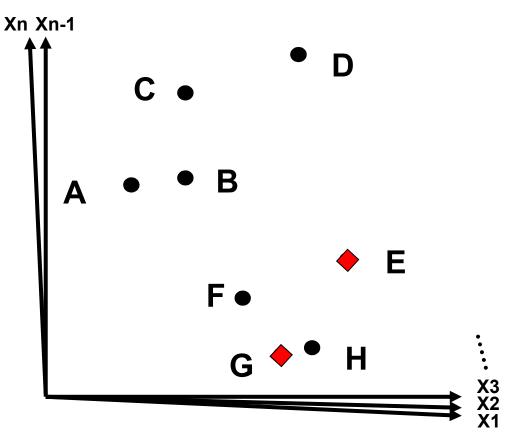
≻K-Quasi-Centers clustering

On-line learning strategies
Data domain description
Intel Project

- Patterns are clustered into categories according to the similarity
- K-means algorithm is widely applied

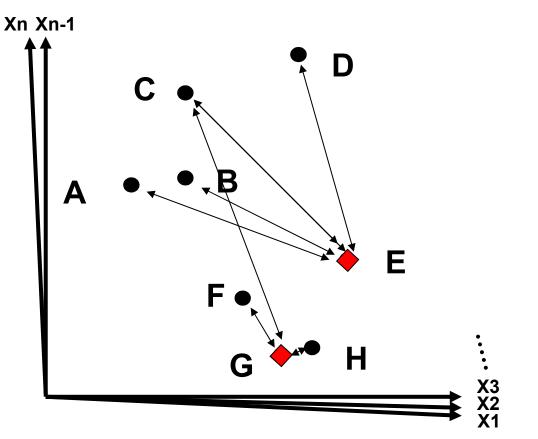


➢Original K-means



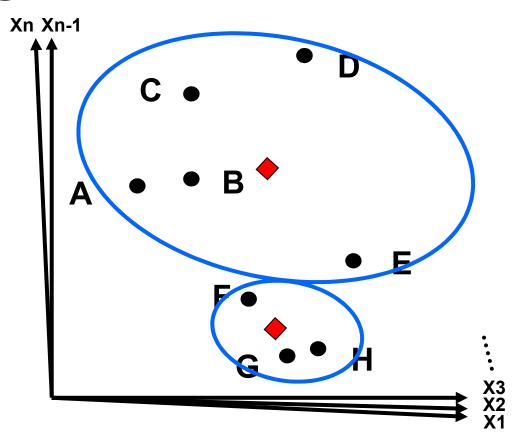
(1)Select an initial cluster center

➢Original K-means

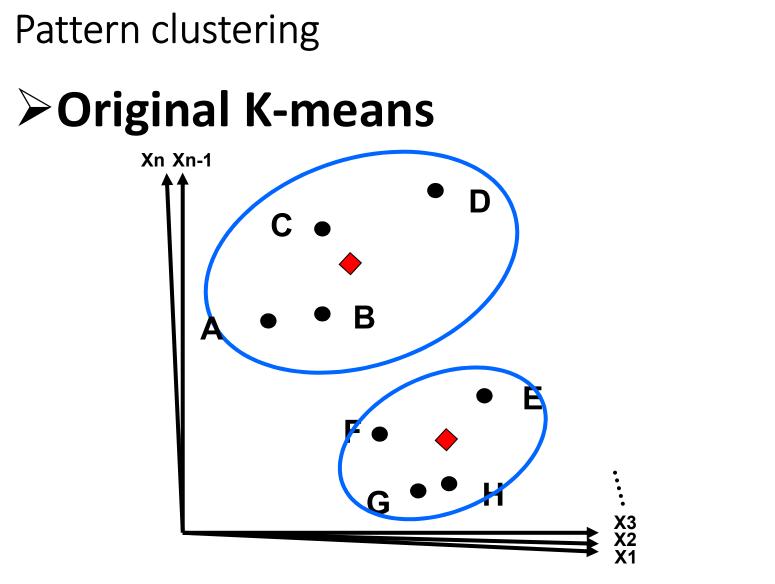


(2)Compute the distance from the cluster center

>Original K-means



(3)Form cluster and update cluster center as centroid of patterns



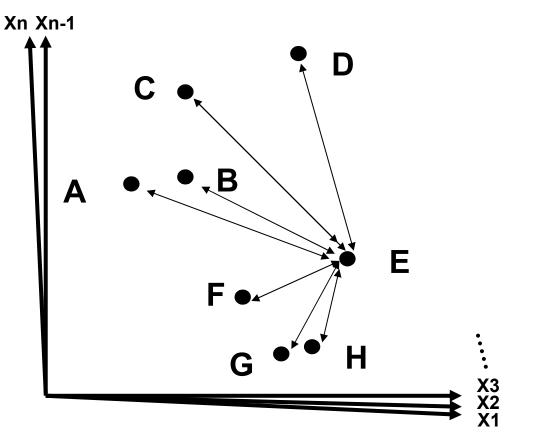
(4) Repeat the step (2) and step(3) Until the stop condition is satisfied.

•Original K-means

Plenty of calculations among vectors, hardly implemented in parallel.

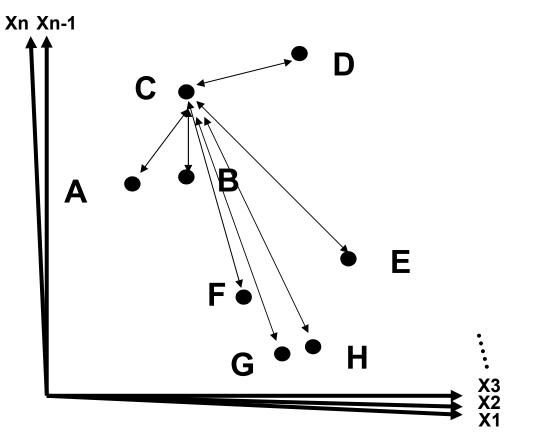
K-Quasi-Centers (KQC) is proposed as the parallel-architecture-friendly version of K-means.

>Our basic idea



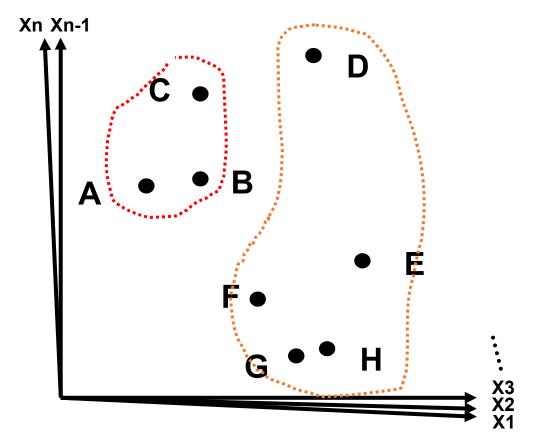
(1) Compute all the Euclidean distances and store them

>Our basic idea



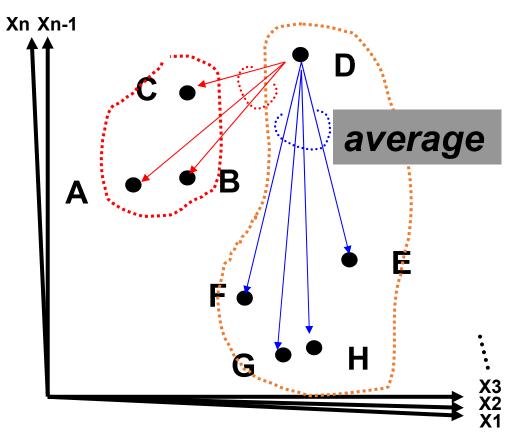
(1) Compute all the Euclidean distances and store them

≻Our basic idea



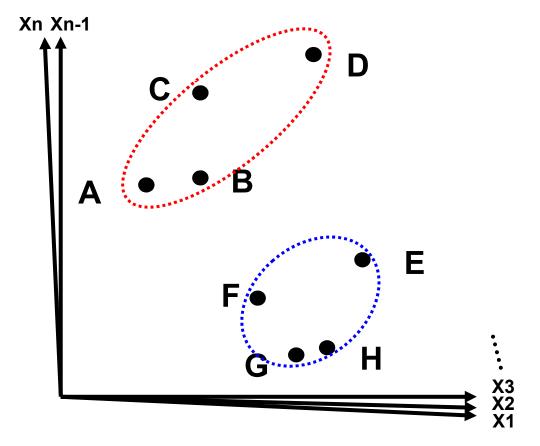
(2) Initialize the clustering randomly

≻Our basic idea



(3) Updating the clustering form by scalar calculation

≻Our basic idea



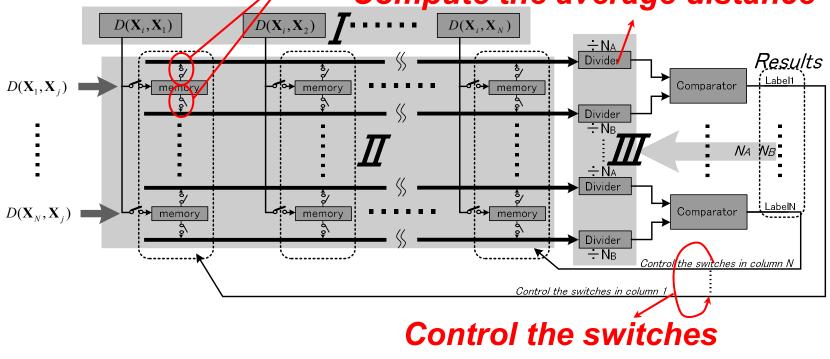
(4) Repeating till converge

K-Quasi-Centers clustering ≻Our basic idea

Learning based on the calculations among scalars Possible to implement in fully-parallel

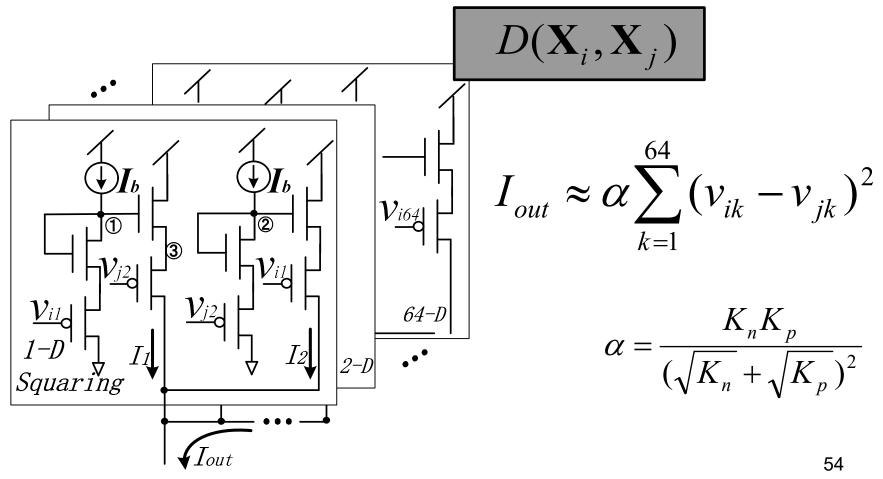
> Hardware implementation (two clusters)

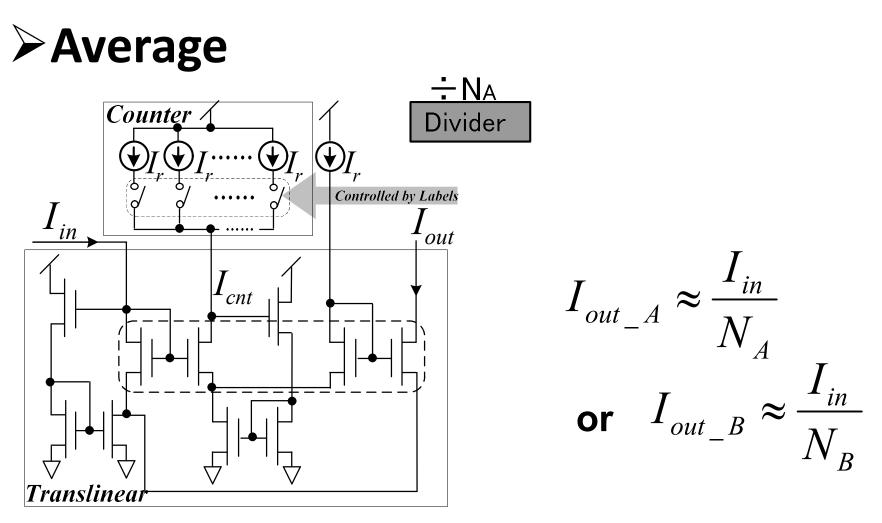
Switches reflect the cluster label of this pattern // Compute the average distance

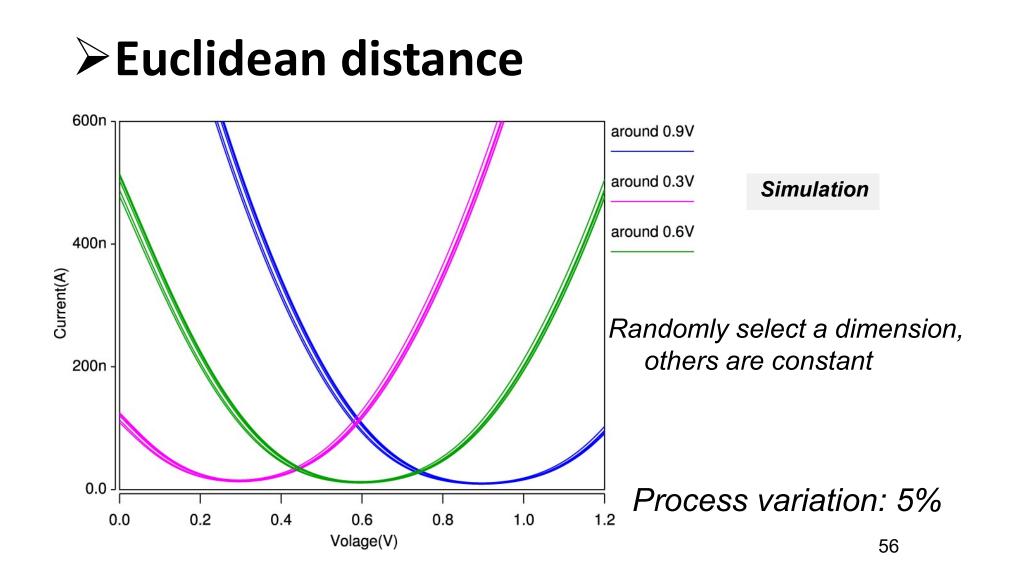


Fully-parallel, free and real-time feedback, self-converge

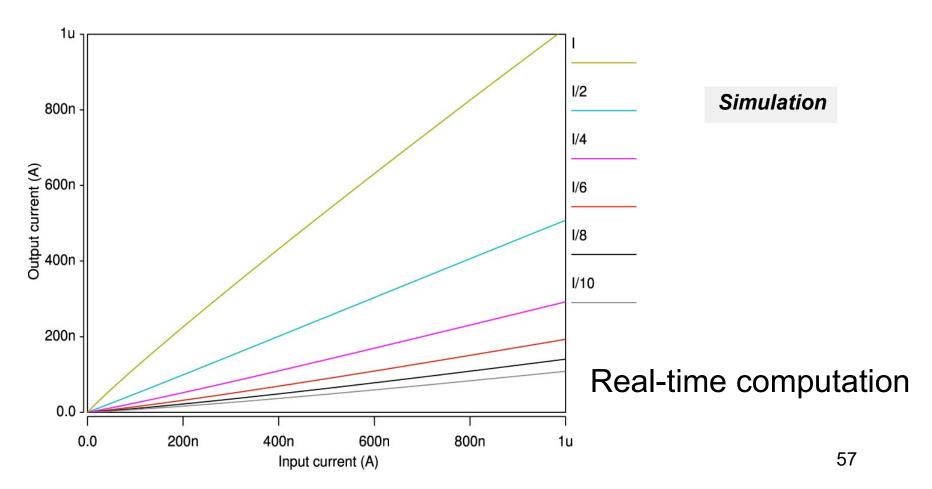
Euclidean distance



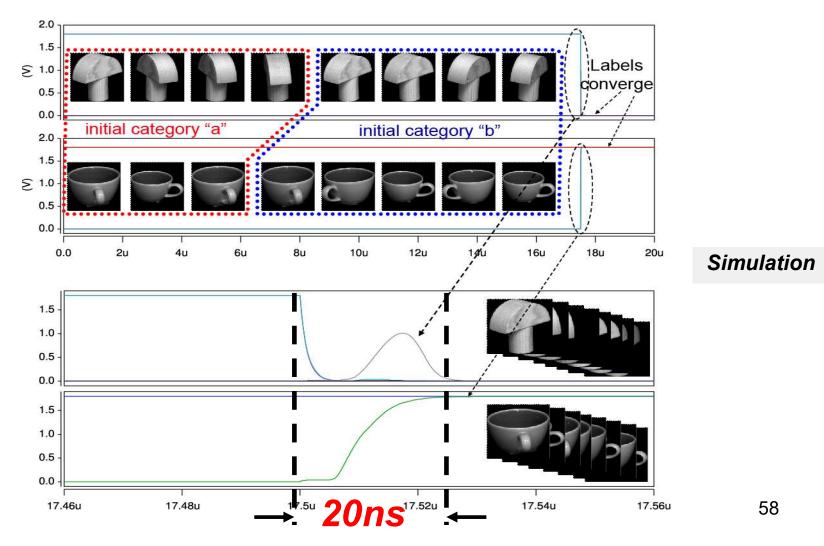




>Translinear (divider)



Fully parallel KQC processor ≻Image clustering



Fully parallel KQC processor > Performance

Comparisons

	[3]	[4]	This work
Implementation	FPGA & CPU	Digital	Analog
Number of devices	N/A	414K gates	20K Tran.s
Distance measurement	Manhattan	Euclidean	Euclidean
Number of dimensions	2	$1 \sim 8$	$1 \sim 64$
Number of iterations	25	16	self-converging
Speed $(vectors/s)$	$< 4.93 \times 10^6$	$1.38 imes 10^6$	$10 imes 10^6$
No. of samples	2905	$76.8 imes 10^3$	16

[3] H. M. Hussain et al, NASA/ESA Conf. Adaptive Hardware and Systems, 2011, pp. 246-255.
[4] T.-W. Chen and S.-Y. Chien, IEEE Trans. VLSI Syst., vol. 11, no. 8, pp. 1336-1345 (2011).

Summary

Proposed architecture can be applied in pattern clustering problems, with improved performances Problems

Limited hardware resource

V.S.

Huge database

Unpredictable database

Outline

Analog implementations of them:

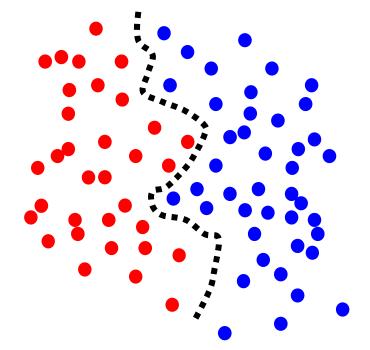
Support Vector Machine

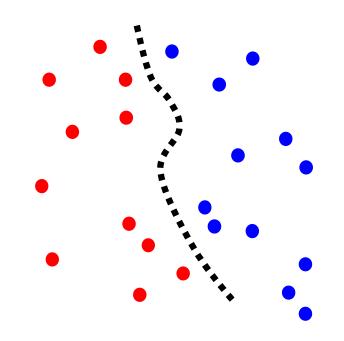
≻K-Quasi-Centers clustering

≻On-line learning strategies

> Data domain description

>Intel Project





Great performance

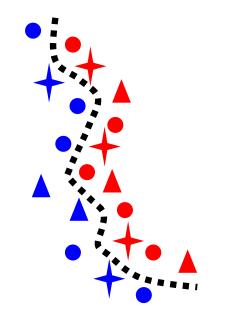
Easy to train

But difficult to train

But performance is poor

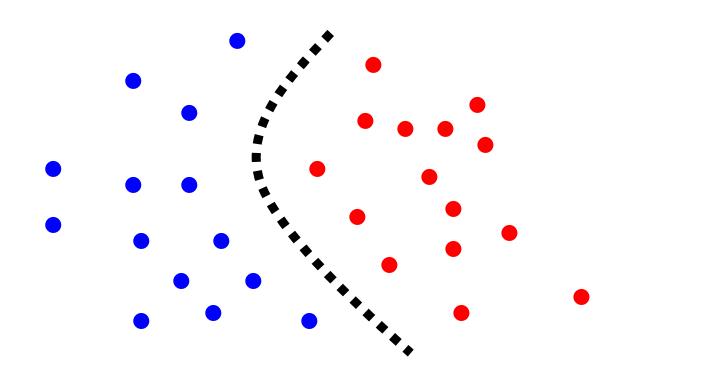
Hardware resource is limited

We wish:



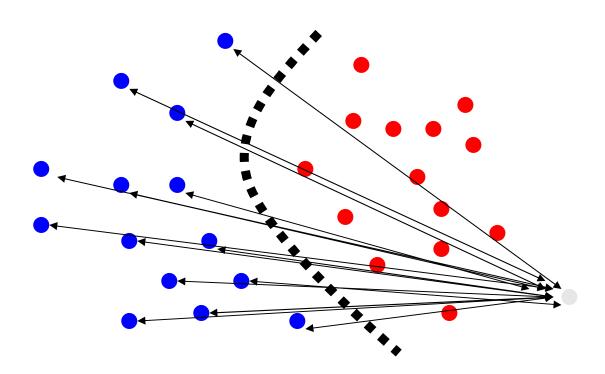
On-line learning strategy is developed for this purpose $_{64}$

≻Our proposal



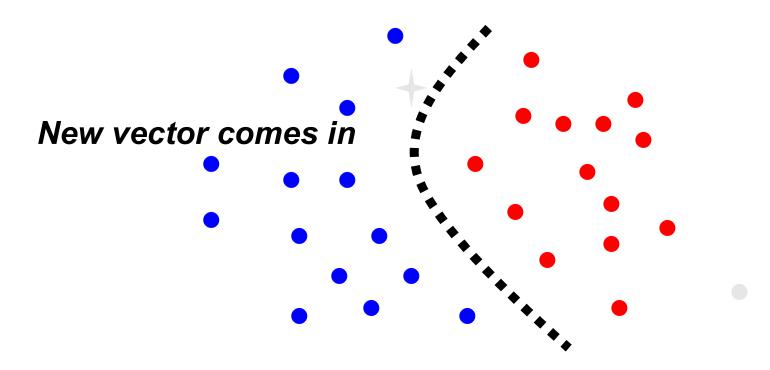
Half-unsupervised

≻Our proposal

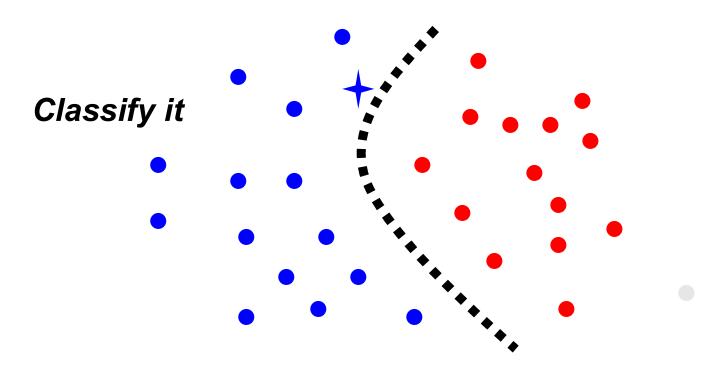


Fortunately, it is possible only in fully-parallel system

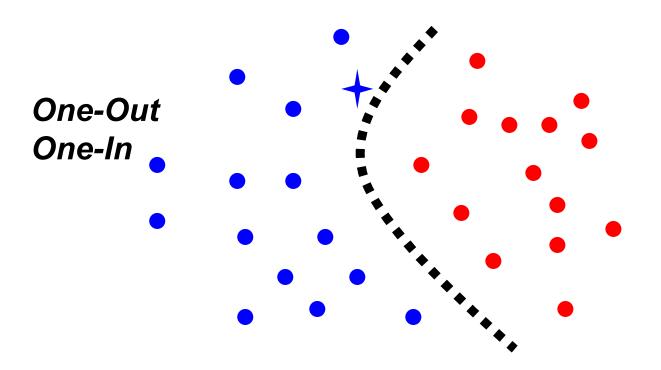
➤Our proposal



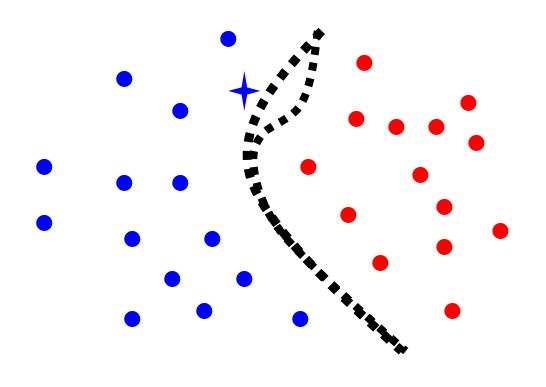
≻Our proposal



≻Our proposal

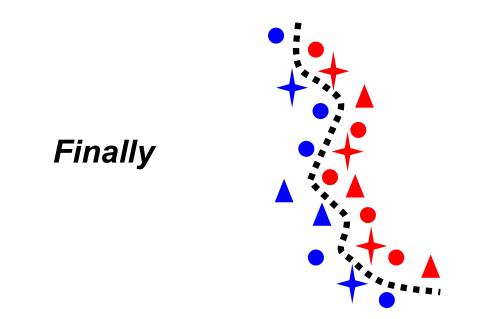


≻Our proposal



Learning again

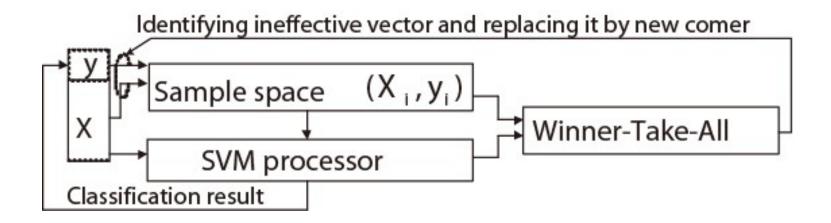
≻Our proposal



This strategy is suitable for fully parallel hardware implementation

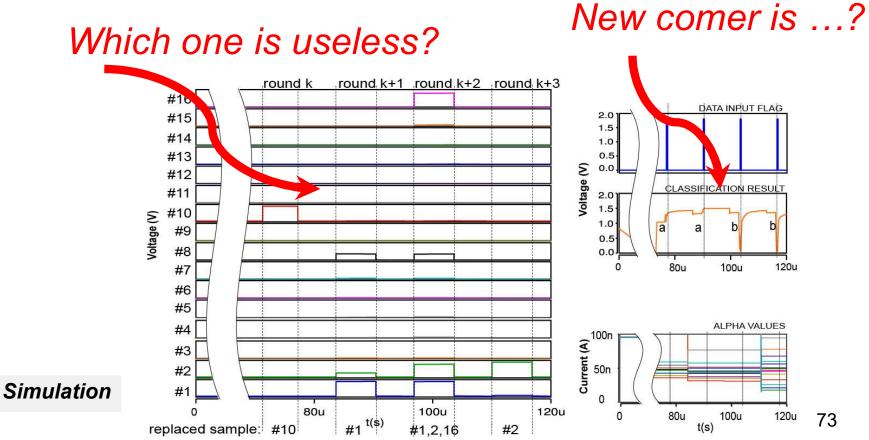
Hardware implementations

On-line SVM



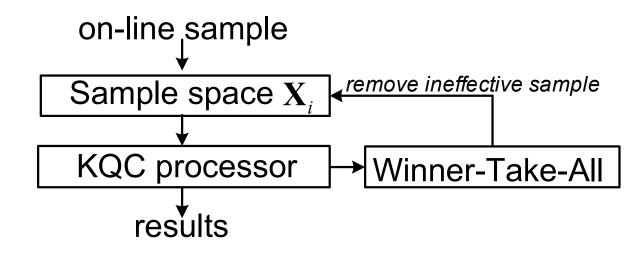
Hardware implementations

On-line SVM



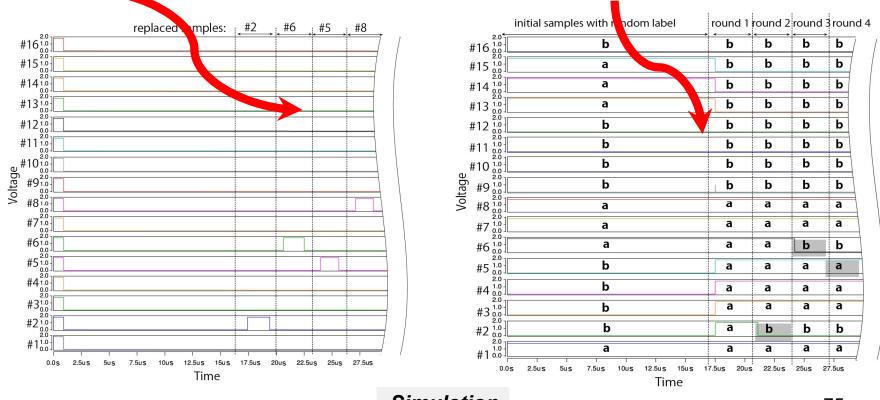
Hardware implementations

On-line KQC learning



On-line K-means

Which one is useless? How to cluster them?



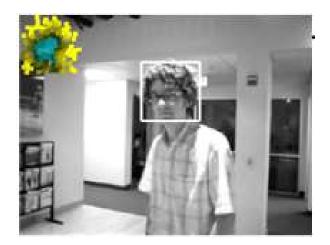
Simulation

Is this kind of hardware feasible to be used in the real-world applications?

An object tracking system was built by our group-member Mr. Zhao, employing an SVM chip fabricated in this work.

SVM in tracking

Target: find face in video

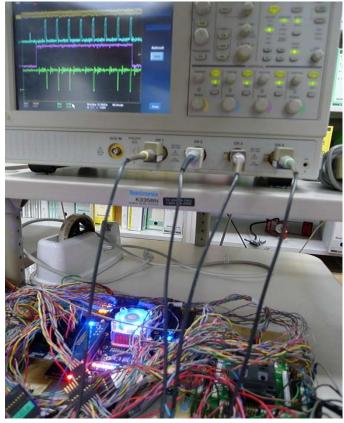


SVM: distinguish face and background

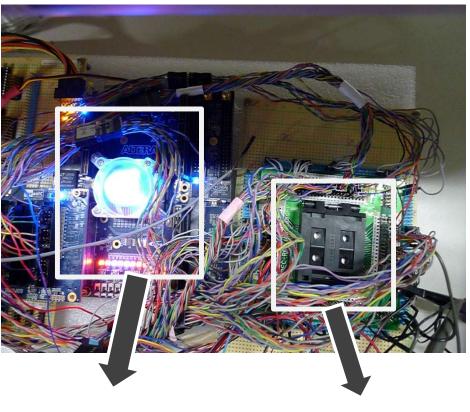
Framework of system was built by Mr. Zhao

Analog SVM chip was employed

SVM in tracking



Framework of system was built by Mr. Zhao

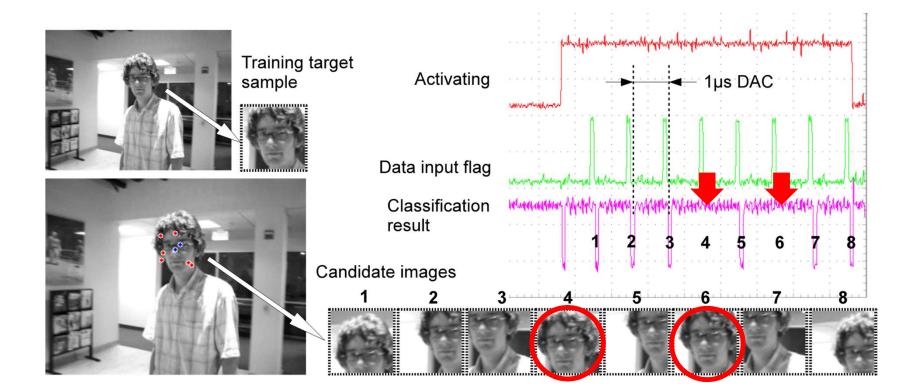


FPGA: Tracking Framework Analog SVM chip

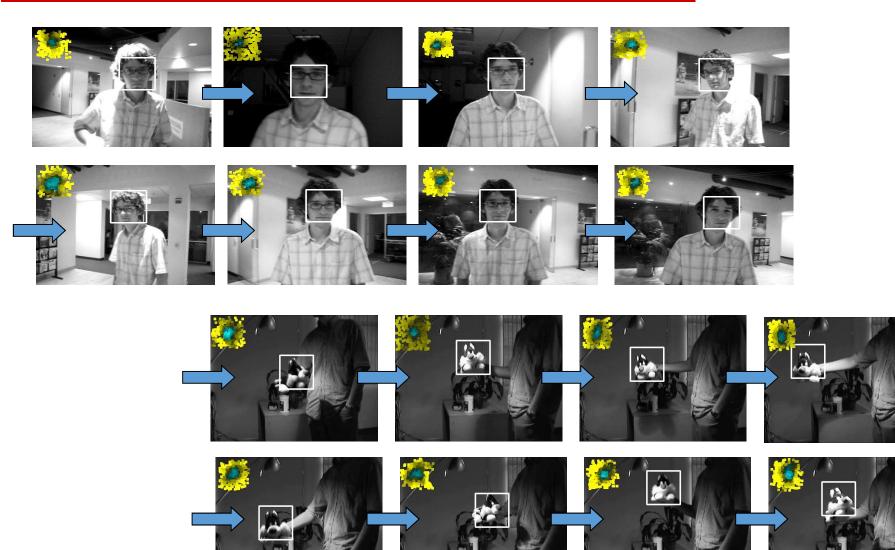
Analog SVM chip was employed

SVM in tracking

Measurement



Object Tracking With On-Line Shape Learning



P. Zhao, R. Zhang, and T. Shibata, "Real-time Object Tracking Algorithm Employing On-Line Support Vector Machine and Multiple Candidate Regeneration," ICAISC, 2012, Poland.

Summary

- Proposed on-line learning strategy, which is on the basis of fully parallel architecture, helps to improve hardware flexibility and efficiency.
- ✓ Proposed hardware is feasible to use in realworld applications.

<u>R. Zhang</u> and T. Shibata, LNCS, 2012. <u>R. Zhang</u> and T. Shibata, *J. Analog Integrated Circuits and Signal Processing* (Springer), 2012.

P. Zhao, R. Zhang and T. Shibata, LNCS, 2012.

Outline

Analog implementations of them:

Support Vector Machine

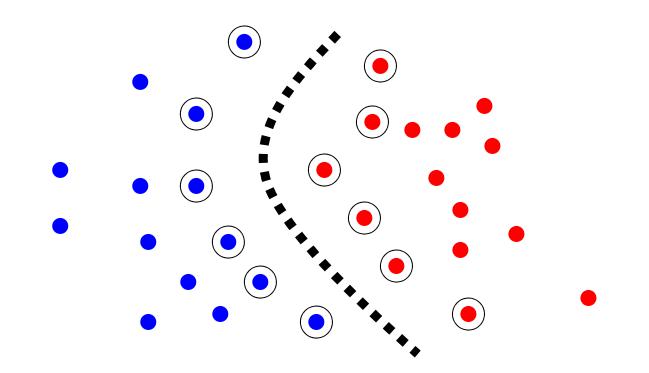
≻K-Quasi-Centers clustering

>On-line learning strategies

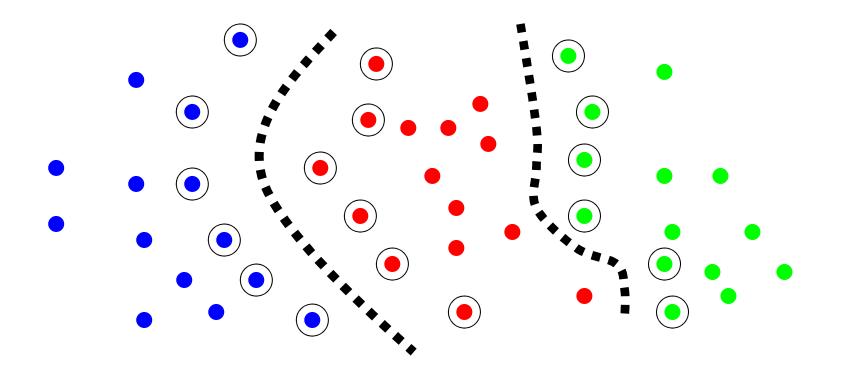
Data domain description

Discussion on scalability

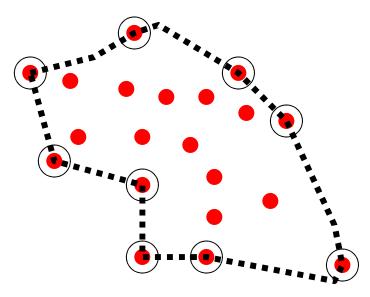
Standard SVM can do this well:



Standard SVM can do this somehow:

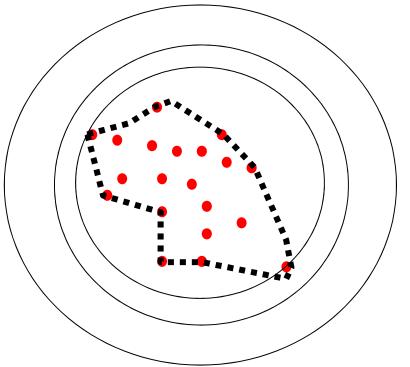


How about this?



Support vector domain description (SVDD) was developed

But, expensive to train it



Find a sufficiently compact and fit boundary, including almost all samples ${}_{86}$

Algorithm:

Derivations in appendix 2

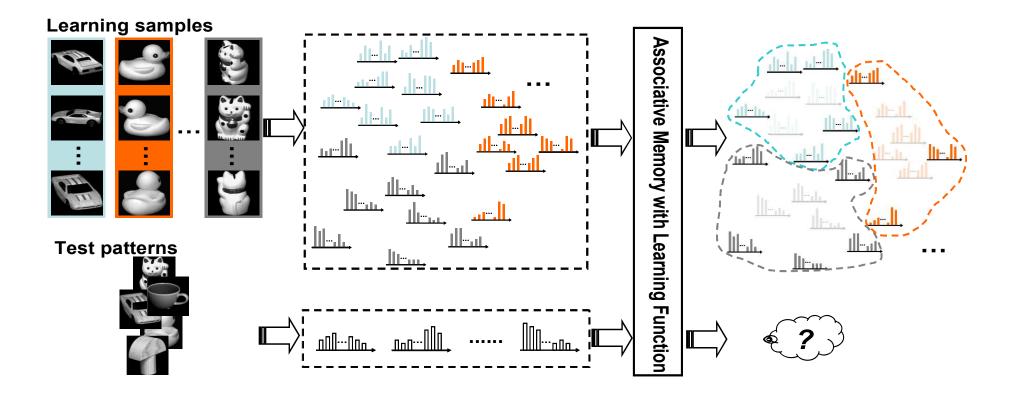
To make: $(X_i - \mathbf{a})^T (X_i - \mathbf{a}) \le R^2 + \xi_i$, With minimum R

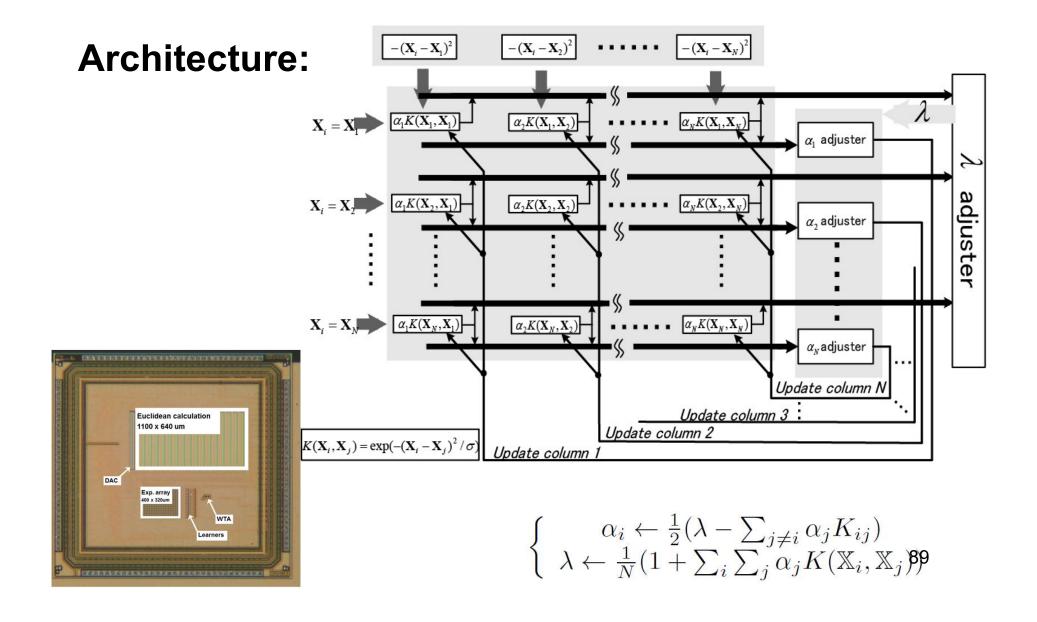
Becomes:
$$\min L = 1 - \sum_{i} \alpha_i^2 - \sum_{i \neq j} \alpha_i \alpha_j K(\mathbb{X}_i, \mathbb{X}_j)$$

with: $\sum_{i} \alpha_i = 1$

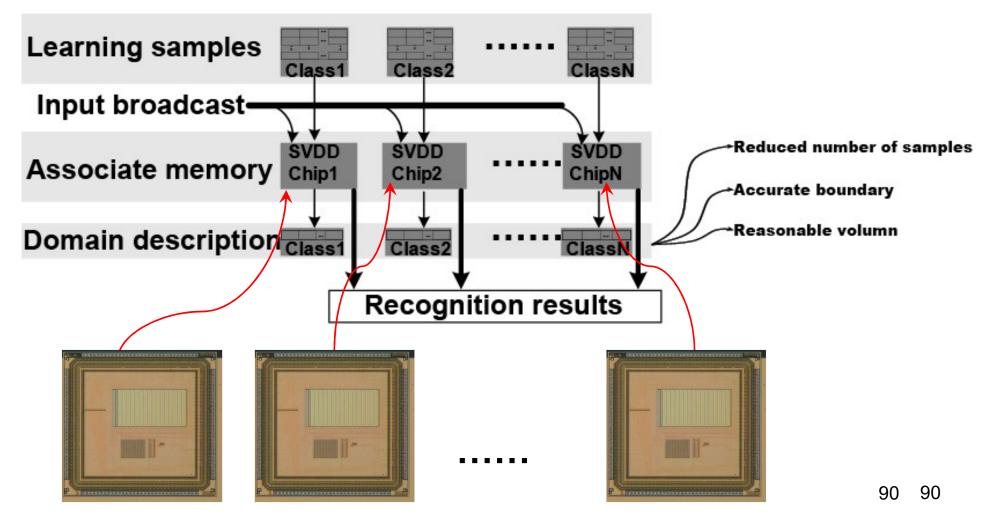
$$\begin{cases} \alpha_i \leftarrow \frac{1}{2} (\lambda - \sum_{j \neq i} \alpha_j K_{ij}) \\ \lambda \leftarrow \frac{1}{N} (1 + \sum_i \sum_j \alpha_j K(\mathbb{X}_i, \mathbb{X}_j)) \end{cases}$$

In the real-world applications:



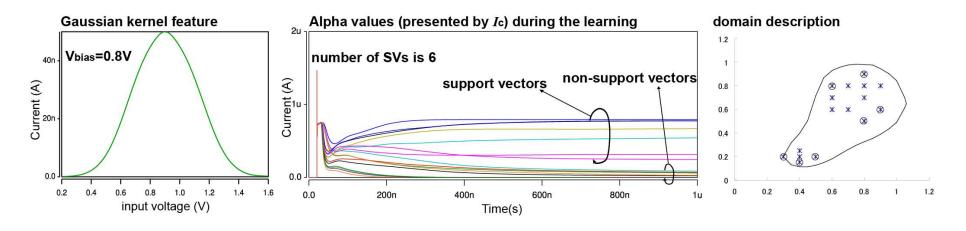


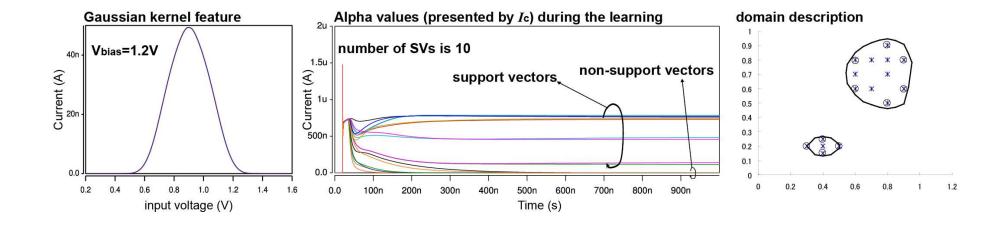
In the real-world applications:

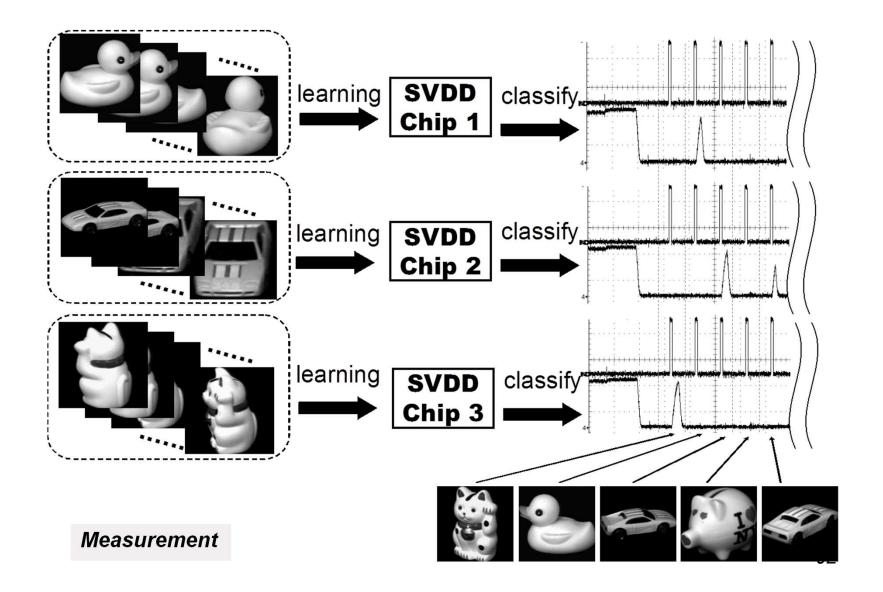


Using the fully parallel array:

Simulation







Summary

SVDD is more similar to human perception, it can be implemented by the proposed architecture with mathematical tricks. Last dance

Gap makes people hop

End

Thank you very much.